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A three-dimensional non-linear time-marching method and numerical analysis for
aeroelastic behaviour of an oscillating blade row is presented. The approach is based on the
solution of the coupled #uid}structure problem in which the aerodynamic and structural
equations are integrated simultaneously in time. In this formulation of a coupled problem,
the interblade phase angle at which a stability (or instability) would occur is a part of the
solution. The ideal gas #ow through multiple interblade passage (with periodicity on
the whole annulus) is described by the unsteady Euler equations in the form of
conservative laws, which are integrated by use of the explicit monotonic second order
accurate Godunov}Kolgan volume scheme and a moving hybrid H}H (or H}O) grid. The
structure analysis uses the modal approach and 3-D "nite element model of the blade. The
blade motion is assumed to be a linear combination of modes shapes with the modal
coe$cients depending on time. The in#uence of the natural frequencies on the aerodynamic
coe$cient and aeroelastic coupled oscillations for the Fourth Standard Con"guration is
shown. The stability (instability) areas for the modes are obtained. It has been shown that
interaction between modes plays an important role in the aeroelastic blade response.
This interaction has an essentially non-linear character and leads to blade limit cycle
oscillations.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Modern turbomachines operate under very complex regimes where a mixture of subsonic,
transonic and supersonic regions coexist. With recent advances in internal compressible
#ow modelling and increased computational power, it is now possible to undertake both
steady and unsteady #ow analysis of very complex turbomachinery geometry. The trend for
improved gas turbine engine design with higher aerodynamic blade loading and smaller
physical size attracts much attention to the aeroelastic behaviour of blades not only in
compressors, but also in turbines. Flow-induced blades oscillations of the turbine and
compressor can lead to fatigue failures of a construction and so they represent an important
problem of reliability, safety, and operating cost.
Aeroelasticity phenomena are characterized by the interaction of #uid and structural

domains, most prediction methods tend to treat the two domains separately, and they
0022-460X/02/120315#13 $35.00/0 � 2002 Elsevier Science Ltd.
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usually assume some critical interblade phase angle for which the #utter analysis is carried
out for a single passage.
The undeniable importance of spatial and non-linear e!ects for practical turbomachinery

con"gurations has led to the development of three-dimensional methods. Since the early
1980s a number of time accurate Euler and Navier}Stokes procedures have been developed
to predict blade row unsteady #ows in which unsteadiness is caused by aerodynamic
disturbances at the in#ow or out#ow boundaries, relative motions between the blade rows,
or blade vibrations. The traditional approach in #utter calculations of bladed disks is based
on frequency domain analysis [1, 2], in which the blade motions are assumed to be
harmonic functions of time with a constant phase lag between adjacent blades, and the
mode shapes and frequencies are obtained from structural computations. This approach
ignores the feedback e!ect of the #uid on the structural vibration.
In recent times, the new approaches based on the simultaneous integration in time of the

equations of motion for the structure and the #uid have been developed [3}12]. These
approaches are very attractive due to the general formulation of a coupled problem, as the
interblade phase angle at which a stability (instability) would occur is a part of the solution.
In the present study, the simultaneous time integration method has been described to

calculate the aeroelastic behaviour for a three-dimensional oscillating blade row in
transonic gas #ow.

2. AERODYNAMIC MODEL

The #ow model is described in detail in reference [10]; a brief summary will be given here
for the sake of completeness. The 3D transonic #ow of an ideal gas through a multipassage
blade row is considered. In the general case, the #ow is assumed to be a periodic function
from blade to blade (in pitchwise direction), so the calculated domain includes all blades of
the whole assembly (see Figure 1).
The #ow equations will be written for a three-dimensional Cartesian co-ordinate system

which is "xed to a rotating blade row. In this case, the conservative form of the unsteady
Euler equations is given by [10]

�
�t ��

fd�#�� F ) nd�#��

Hd�"0. (1)

Here f is the solution vector, F is the inviscid #ux through the lateral area � bounding the
"nite volume �, and H is the source vector which contains the terms due to the rotation of
the coordinate system. The above system of equations is completed by the perfect gas
equation

p"�� (�!1), (2)

where � denotes the ratio of the #uid speci"c heats and � is an internal energy of mass unit.
The spatial solution domain is discretized by using linear hexahedral elements. Equations
(1) and (2) are integrated on a moving H}H (or H}O)}type grid with use of the explicit
monotonic second order accuracy Godunov}Kolgan di!erence scheme.
It is assumed that the unsteady #uctuations in the #ow are due to prescribed blade

motions, and the #ows far upstream and far downstream from the blade row are at most
small perturbations of uniform free streams. So the boundary conditions formulation is
based on the one-dimensional theory of characteristics, where the number of physical



Figure 1. A view of a sector of the whole blade assembly.
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boundary conditions depends on the number of characteristics entering the computational
domain.
In the general case, when the axial velocity is subsonic at the inlet boundary initial values

for total pressure, total temperature and #ow angles are used in terms of the rotating frame
of reference, while at the outlet boundary only the static pressure has to be imposed. On the
blade surface, zero #ux is applied across the solid surface (the grid moves with the blade).
In general, computations are made using a number of blades passages equal to the

number of blades in the cascade. Periodic conditions are applied at the upper and lower
boundaries of the calculated domain at each time moment. However, there are some
situations where it is possible to reduce the number of passages used in the calculations. For
unsteady #ows in which all blades perform harmonic oscillations with a particular mode
shape, frequency and a constant interblade phase angle (IBPA) (tuned cascades), the
number of blades passages depends on the value of the interblade phase angle. For instance,
computations with the phase angle �"$903 can be made for four passages. In the time
domain method, in which the motion of the blades of a coupled #uid}structure problem is
not known in advance, it is necessary to include in the numerical calculations all blade
passages. The time step at the coupled calculations is assumed to be constant and is chosen
from the stability conditions of the explicit scheme for the #uid model.

3. STRUCTURAL MODEL

The structural model is based on a linear modal model [13], the mode shapes and natural
frequencies being obtained via standard FE analysis techniques. Each blade is treated as an
individual during the numerical calculations.
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The structural part of the aeroelastic equations of motion are uncoupled by using the
mode shape matrix. The displacement of each blade can be written as a linear combination
of the "rst N modes shapes with the modal coe$cients depending on time,

u (x, t)"U(x, t)q (t)"
�
�
���

U
�
(x)q

�
(t), (3)

where U
�
(x) is the displacement vector corresponding to the ith mode shape and q

�
(t) is the

modal coe$cient of the ith mode.
Function U satis"es the orthogonality conditions and normalization condition, so the

equation of motion of the tuned blades reduces to the set of independent di!erential
equations relatively to modal coe$cients of modes shapes:
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Recalculation of modal forces �
�
is performed on each iteration (see reference [10]) with

use of the instantaneous pressure "eld calculated for all cells of the blade, in the following
way:
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Here the numerator represents the work of pressure forces at the blade displacement in
accordance with the ith mode. The pressure p is the function of q

�
and dq

�
/dt. The

denominator represents the normalizing factor. Having de"ned the modal coe$cients from
the set of equations (4), blade displacement and velocity can be obtained in the form of
equation (3).
Boundary conditions from the structural and aerodynamic domains are exchanged at

each time step and the aerodynamic mesh is moved to follow the structure motion (the
partially coupled method). The structural damping is not included here. The scheme used to
integrate the structural equations is the same as the scheme used in the #ow code. For this
scheme the accuracy of the calculations of natural frequencies and mode shapes is su$cient.
The integration scheme introduces a damping; this value is very small and was found from
calculations done with the aerodynamic forces set to zero.

4. NUMERICAL RESULTS

The numerical calculations have been carried out for the turbine cascade known as the
Fourth Standard Con"guration, which has been experimentally investigated in the
non-rotating annular cascade tunnel in transonic #ow [1]. As the "rst step, the numerical
calculations were performed to compare with the experimental ones.
The steady and unsteady predictions have been made on the hybrid H}H-type grid with

10�30�60 grid points including the moving H-grid (16 points across) near the blade. In
order to compare the results for the unsteady #ow, the numerical results for the steady #ow
must be validated, because they are the starting point for the unsteady #ow calculations. In
Figure 2(a) the calculated and experimental results of steady pressure coe$cient are
presented and in Figure 2(b) the distribution of the isentropic Mach number along the
middle section of the blade is shown. The integers &&1'' and &&2'' correspond to the suction and



Figure 2. (a) The time-averaged pressure coe$cient distribution over the blade chord: 1, suction side; 2, pressure
side;��, pressure side experiment;��, suction side experiment. (b) TheMach number distribution over the blade
chord: 1, suction side; 2, pressure side; ��, pressure side experiment; ��, suction side experiment.

Figure 3. Aerodamping coe$cient in dependence of interblade phase angle: 1, casing; 2, mid; 3, hub;
4, experiment.
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pressure sides respectively. Agreement between the numerical and experimental results is
quite good. The small discrepancies are noticeable near the leading edge at approximately
30% of the chord length on the suction side.
The in#uence of the interblade phase angle on the aerodamping coe$cient for the

assumed bending oscillations is shown in Figure 3. Aerodamping coe$cient D is equal to
the negative work coe$cient during one cycle of oscillations. In that "gure the numerical
calculated aerodamping coe$cients in the hub (&&1''), middle (&&2'') and root (&&3'') sections and
the experimental ones (&&4'') are presented. From these results the strong in#uence of IBPA is
visible. In the range of !1203(IBPA(!303 the aerodamping coe$cients have
negative values that correspond to the transfer of energy from the #ow to the oscillating
blades. The maximum aerodamping coe$cient is for IBPA close to 903. In this case the
aerodamping coe$cient does not depend on the blade length. The experimental values of
the aerodamping coe$cient is close to the calculated results although small di!erence is
found in the vicinity of the maximum value of the aerodamping coe$cient.



Figure 4. (a, b) The "rst harmonic unsteady pressure amplitude along the blade chord: 1, pressure side theory; 2,
suction side theory; 3, pressure side experiment; 4, suction side experiment. (c, d) The phase distribution along
the blade chord: 1, pressure side theory; 2, suction side theory; 3, pressure side experiment; 4, suction side
experiment.
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A comparison of the calculated and experimental distribution of the "rst harmonic
amplitude and the phase for IBPA of $903 is presented in Figure 4. The agreement is
satisfactory. The minimal and maximal values of unsteady pressure occur for in-phase and
counter-phase oscillations respectively. The energy exchange between the passing #ow and
the vibrating blade is de"ned by the pressure phase shift relative to the blade motion. The
positive phase shift on the pressure side and the negative phase shift on the suction side
correspond to aerodamping of the system (stability) (see reference [14]).
In the next step of the numerical study the in#uence of the "rst four mode shapes on

the blade response in the coupled #uid}structure calculations is shown. The mode shapes
of the considered blade are presented in Figure 5. The "rst mode is mainly the bending
mode, the second one is the torsional mode, the third and fourth ones are the
bending}torsion modes. The natural frequencies are equal to the 150, 750, 900 and 1050 Hz
respectively.
Figures 6 and 7 show the aerodamping coe$cient versus the interblade phase angle for

the "rst and second natural mode shapes of STC4, respectively, under harmonic oscillations



Figure 5. (a) The natural mode shapes of the blade, "rst mode shape, second mode shape. (b) The natural mode
shapes of the blade, third mode shape, fourth mode shape.

A COUPLED FLUID}STRUCTURE ANALYSIS 321
with di!erent frequencies (calculated by 3-D #utter aerodynamic model). The negative
values of � correspond to the transfer of energy from the #ow to the blade (self-excitation),
and the positive values correspond to dissipation of an oscillating blade energy to the #ow.
All curves have the typical sinusoidal forms. It is that the aerodamping grows as the
oscillation frequency increases.
It should be pointed out that the oscillations according to the "rst mode (bending

oscillations) are characterized by the negative values of aerodamping coe$cient near the
IBPA of !903 (see Figure 6), while the oscillations according to the second mode have the
self-excitation area near the IBPA of 903 (see Figure 7).
The in#uence of the phase angle on the sign of the aerodamping coe$cient is important

for the low modes of vibration and low natural frequencies. It decreases with increase of the
mode number and natural frequencies. Aerodamping coe$cient grows almost linearly
taking positive values over all frequency range except the area of low frequencies
( f(300 Hz). Figure 8 shows the areas of possible instability for STC4 (Fourth Standard
Con"guration). It can be seen that instability of the "rst mode appears at the phase
angle equal to !903 ( f(150 Hz) whereas the instability of the second mode appears at
phase angle equal to #903 ( f(250 Hz). The higher the natural modes are the more stable
the cascade is, over the full frequency range.



Figure 6. Aerodamping coe$cient versus interblade phase angle for the "rst mode of vibration and di!erent
vibration frequencies.

Figure 7. Aerodamping coe$cient versus interblade phase angle for the second mode of the vibration and
di!erent vibration frequencies.
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The sign of the aerodamping coe$cient calculated for the harmonic oscillations, may
be considered only as a necessary but not su$cient condition for self-excited oscillations.
The "nal estimation of the blade row aeroelastic behaviour may be obtained on the basis of
the coupled #uid}structure solution in the time marching algorithm. In this case the blade
response is de"ned not only by the harmonic time history, at which the aerodamping
coe$cient has been calculated, but also by such parameters which in#uence the
aerodynamic force as the mass #ow, the blade mass and the natural frequency of the blade.
All calculations were run from the very beginning for harmonic oscillations until

the steady state periodic #ow through the vibrating blade row converged. During this time
the forced frequencies of harmonic oscillations of each mode were equal to their natural
frequencies respectively. After some time moment, named as the start regime, there began



Figure 8. The stability regions for the "rst and second mode shapes.

Figure 9. The aeroelastic oscillations of two adjacent blades for the "rst mode, t"(	/316) [s].

A COUPLED FLUID}STRUCTURE ANALYSIS 323
the coupled vibrations in which the blade displacements and velocities, and the #ow
parameters are used as the initial conditions for the coupled time-integration procedure.
One can consider the aeroelastic blade response, vibrating from the beginning at the

harmonic oscillations with IBPA of !903, and next according to #uid}structure
interaction.
Figure 9 illustrates the two adjacent blades motion of the "rst mode with forced

frequency 150 Hz. It corresponds to aerodamping coe$cient value close to zero (see
Figure 6). Here q

��
and q

��
denote the modal coe$cients for the "rst and second blade

oscillation of the "rst mode. As can be seen from Figure 9, the blade oscillations are damped
with the logarithmic decrement equal to an approximately constant value. It indicates that
the blade motion is close to the linear damped oscillations. The blades are "xed at the root,
so the root conditions are di!erent from the experiment [1]. This is the reason for the
damped oscillations instead of the typical #utter response.



Figure 10. The aeroelastic oscillations of two adjacent blades corresponding to the second mode, t"(	/316) [s].

Figure 11. The aeroelastic oscillations of two adjacent blades corresponding to the third mode, t"(	/316) [s].
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Figure 10 presents the analogous graphs for the two adjacent blades oscillations
corresponding to the second mode of vibration, Figure 11 to the third mode and Figure 12
to the fourth mode. For all regimes the oscillations are damped. The higher the natural
frequency, the more stable the blade is.
The di!erent character of the blade motion was observed for consideration of the

interaction of the natural mode vibrations. Figure 13 shows the blade response at the
harmonic oscillations corresponding to the "rst and second modes. It is clearly observed
that response of the blade for the second mode shape decays, but the amplitude of the "rst
mode tends to the approximately constant value, that corresponds to the limit cycle of
oscillations. A similar situation is observed for the harmonic oscillation corresponding to
the "rst up to the fourth natural modes. Figures 14 and 15 show the two adjacent blade



Figure 12. The aeroelastic oscillations of two adjacent blades corresponding to the fourth mode, t"(	/316) [s].

Figure 13. The aeroelastic oscillations of two adjacent blades corresponding to the "rst and second mode,
t"(	/316) [s].
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response for taking into account the interaction of "rst, second, third and fourth natural
modes at the initial IBPA of #903. Although the aerodamping coe$cient at the harmonic
oscillation is positive (that corresponds to the stable motion), a transient behaviour is
observed and the blades motion changes to the oscillations with the interblade phase angle
equalling !903.
As IBPA of !903 represents an unstable condition for the "rst mode, the amplitude of

the "rst mode grows approaching the limit cycle of oscillations.

5. CONCLUSIONS

In the present study, the simultaneous time domain method and the modal superposition
method have been used to determine the aeroelastic stability of the cascade. The numerical
analysis of the in#uence of natural modes on an aeroelastic blade response for the Fourth



Figure 14. The "rst blade oscillations by the "rst, second, third and fourth modes (IBPA of #903), (t"	/316) [s].

Figure 15. The second blade oscillations by the "rst, second, third and fourth modes (IBPA of #903),
(t"	/316) [s].
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Standard Con"guration has been carried out. It has shown that each of the mode shapes
oscillations in the range of frequencies f'150 Hz is damped. The interaction between the
modes shapes has essentially a non-linear character and leads to limit cycle vibrations
(blade auto-oscillations).
The presented time domain method allows a more realistic simulation of the motion of

the #uid and the cascade blades that should lead to a better physical understanding.
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